中游,电池中游端,开阳从仅有磷酸铁锂正极材料,到新增电解质六氟磷酸锂、双氟磺酰亚胺锂,碳酸酯类电解液,正在引入导电剂等中游产品;精细化工中游端,目前有六偏磷酸钠、焦磷酸钠、三聚磷酸钠、饲料级磷酸氢钙、无卤阻燃剂
但是,目前市场上看到的电解液行业龙头所推行的电解液的产品都还是传统的碳酸酯类的电解液为主,依旧存在一定的问题。简单来说,首先就是安全性差。
且在碳酸酯类电解液中hf腐蚀、过渡金属元素溶解和表面催化等导致高电压正极材料容量衰降。
然而,锂金属与应用最为广泛的碳酸酯类电解液热力学不匹配,动力学性能较差,极易在锂金属负极表面形成物理化学不稳定的界面膜(solid electrolyte interphase,sei膜),加速锂枝晶生长和界面副反应
一方面,传统的有机碳酸酯类电解液会与镁负极发生钝化反应,产生一层致密的氧化物薄膜,阻碍镁离子通过,最终导致镁离子不能可逆沉积/溶解。...这种镁基双离子电池的工作机理如下:充电时,电解液中的阴离子在正极材料中与石墨发生插层反应,而在负极端则是将电解液中的镁离子储存在有机小分子材料中;放电时则相反,电极材料中的阴阳离子再次回到电解液中。
联合攻关提升能量密度目前,双离子电池的主要技术难点在于其工作电压较高(大于4.2伏),常规碳酸酯类电解液易氧化分解,造成电池充电效率降低。...此外,目前唐永炳团队在高浓度电解液的研发方面也取得了阶段性突破,已研发出高浓度高电压电解液体系,有望进一步提升双离子电池的能量密度和稳定性。
成本方面,以常见的llzo电解质为例,llzo电解质当前价格为2000$/kg,远高于传统碳酸酯类电解液。...从技术路径来讲,固态电解质主要可分为三大类,即氧化物电解质,例如常见的llzo类电解质;硫化物电解质,例如li2s–p2s5电解质;有机聚合物电解质,例如常见的peo基聚合物电解质等。
同时,即便是电池发生了热失控,固态电解质的可燃成分也要远远低于传统的碳酸酯类电解液,从而能够显著降低锂离子电池热失控的剧烈程度,对于动力电池的安全性具有显著的提升。
在充电过程中li+从正极脱出经过电解液扩散到负极表面嵌入到石墨负极内部,放电的过程则正好相反,石墨材料的嵌锂电位与金属li接近,这一方面能够有效的提高锂离子电池的电压,从而提高能量密度,但是另一方面也导致目前常规的碳酸酯类电解液会在石墨负极表面发生还原分解
下图为几种醚类电解液和常规的碳酸酯类电解液电导率与温度之间的关系曲线,从图中能够注意到醚类电解液的低温电导率要明显低于碳酸酯类电解液,同时我们还注意到两种不同浓度的lifsi电解液的电导率曲线上有一个突变点
下图为几种醚类电解液和常规的碳酸酯类电解液电导率与温度之间的关系曲线,从图中能够注意到醚类电解液的低温电导率要明显低于碳酸酯类电解液,同时我们还注意到两种不同浓度的lifsi电解液的电导率曲线上有一个突变点
近日,韩国忠南国立大学的hieu quang pham在传统的碳酸酯类电解液的基础上开发了一款不燃电解液,他们的方法是向传统的电解液(1m的lipf6,溶剂为pc)中加入氟代碳酸二乙酯dfdec,在电解液燃烧时电解液中的
传统的碳酸酯类电解液在超过4.5v以后就会发生明显的氧化分解现象,导致锂离子电池的性能急剧衰降,并产生大量气体,因此提高电解液高压特性的关键在于提升电解液溶剂和锂盐的抗氧化性能。
电解液采用基于六氟磷酸钙做电解质的碳酸酯类电解液。...但是,在传统有机电解液中金属钙表面易发生钝化,导致钙离子不能像锂离子一样可逆沉积,且钙离子电池材料研发困难,多数钙离子电池只能在高温下进行可逆充放电,造成了钙离子电池发展缓慢。
电解液也是锂离子电池的重要组成部分,在锂离子电池内部起到传导li+的作用,目前主流的锂离子电池电解液主要是碳酸酯类电解液(一般至少包含两种以上的碳酸脂类的溶剂,例如ec、dmc、emc等),li盐一般采用
科研人员虽然在室温下未发现钙离子的可逆氧化还原反应,但在75~100℃下发现钙离子在碳酸酯类电解液中能在钙负极表面发生可逆沉积反应,并且在100℃下能循环30周以上。...研究人员提出了一种新型的钙离子电池,以锡箔作为负极与钙离子发生可逆合金化反应,同时采用活性材料与集流体的一体化设计;以石墨作为正极实现阴离子的可逆插层/脱嵌反应;以溶有六氟磷酸钙、具有5v耐高压特性的碳酸酯类溶剂为电解液
1.含f组分添加剂碳酸酯类电解液中少量的hf和h2o可以在li负极表面形成一层均一的lif和li2o层,从而使镀锂过程更加均匀。...电解液的优化和改性对于电解液的优化而言,更多的是从添加剂方面进行着手,通过添加剂的使用,能够极大的优化金属锂负极sei膜的均匀性和稳定性。
碳酸酯类电解液广泛应用于高温锂离子电池中,可以为锂-硫电池在高温工作时提供安全,稳定的电解液环境。但由于多硫化锂与碳酸酯溶剂的大量副反应,大多数锂-硫电池无法采用此类电解液。
现在商用的碳酸酯类电解液会在镁负极表面形成离子无法传导的致密钝化层,使其无法在镁电池体系中得到应用;另外,二价镁离子电荷密度高,相比单电荷阳离子更难在正极材料中固相扩散,因此能用作镁电池正极的材料非常有限