电力系统1000问,先看先行!电力系统知识,这里海量!
251.在母线电流差动保护中,为什么要采用电压闭锁元件?如何实现?
答:为了防止差动继电器误动作或误碰出口中间继电器造成母线保护误动作,故采用电压闭锁元件。
电压闭锁元件利用接在每条母线上的电压互感器二次侧的低电压继电器和零序过电压继电器实现。三只低电压继电器反应各种相间短路故障,零序过电压继电器反应各种接地故障。
252.为什么设置母线充电保护?
答:母线差动保护应保证在一组母线或某一段母线合闸充电时,快速而有选择地断开有故障的母线。为了更可靠地切除被充电母线上的故障,在母联断路器或母线分段断路器上设置相电流或零序电流保护,作为母线充电保护。
母线充电保护接线简单,在定值上可保证高的灵敏度。在有条件的地方,该保护可以作为专用母线单独带新建线路充电的临时保护。
母线充电保护只在母线充电时投入,当充电良好后,应及时停用。
253.何谓断路器失灵保护?
答:当系统发生故降,故障元件的保护动作而其断路器操作失灵拒绝跳闸时,通过故障元件的保护作用于本变电站相邻断路器跳闸,有条件的还可以利用通道,使远端有关断路器同时跳闸的接线称为断路器失灵保护。断路器失灵保护是近后备中防止断路器拒动的一项有效措施。
254.试述断路器失灵保护的作用。
答:(1)对带有母联断路器和分段断路器的母线要求断路器失灵保护应首先动作于断开母联断路器或分段断路器,然后动作于断开与拒动断路器连接在同一母线上的所有电源支路的断路器,同时还应考虑运行方式来选定跳闸方式。
(2)断路器失灵保护由故障元件的继电保护启动,手动跳开断路器时不可启动失灵保护。
(3)在启动火灵保护的回路中,除故障元件保护的触点外还应包括断路器失灵判别元件的触点,利用失灵分相判别元件来检测断路器失灵故障的存在。
(4)为从时间上判别断路器失灵故障的存在,失灵保护的动作时间应大于故障元件断路器跳闸时间和继电保护返回时间之和。
(5)为防止失灵保护误动作,失灵保护回路中任一对触点闭合时,应使失灵保护不被误启动或引起误跳闸。
(6)断路器失灵保护应有负序、零序和低电压闭锁元件。对于变压器、发电机--变压器组采用分相操作的断路器,允许只考虑单相拒动,应用举序电流代替相电流判别元件和电压闭锁元件。
(7)当变压器发生故障或不采用母线重合闸时,失灵保护动作后应闭锁各连接元件的重合闸回路,以防止对故障元件进行重合。
(8)当以旁路断路器代替某一连接元件的断路器时,失灵保护的启动回路可作相应的切换。
(9)与某一连接元件退出运行时,它的启动失灵保护的回路应同时退出工作,以防止试验时引起失灵保护的误动作。
(10)失灵保护动作应有专用信号表示。
255.断路器失灵保护的配置原则是什么?
答:220-500kV电网以及个别的110kV电网的重要部分,根据下列情况设置断路器失灵保护:
(1)当断路器拒动时,相邻设备和线路的后备保护没有足够大的灵敏系数,不能可靠动作切除故障时;
(2)当断路器拒动时,相邻设备和线路的后备保护虽能动作跳闸,但切除故障时间过长而引起严重后果时;
(3)苦断路器与电流互感器之间距离较长,在其间发生短路故障不能由该电力设备的主保护切除,而由其他后备保护切除,将扩大停电范围并引起严重后果时。
延伸阅读:这次是连发 电力系统1000问之二十一弹
256.断路器失灵保护时间定值整定原则是什么?
答:断路器失灵保护时间定值的基本要求:断路器失灵保护所需动作延时,必须保证让故障线路或设备的保护装置先可靠动作跳闸,应为断路器跳闸时间和保护返回时间之和再加裕度时间,以较短时间动作于断开母联断路器成分段断路器,再经一时限动作于连接在同一母线上的所有有电源支路的断路器。
257.对3/2断路器接线方式或多角形接线方式的断路器失灵保护有哪些要求?
答:对于3/2断路器接线方式或多角形接线方式的断路器失灵保护有下述要求:
(1)断路器失灵保护按断路器设置。
(2)鉴别元件采用反应断路器位置状态的相电流元件,应分别检查每台断路器的电流,以判别哪台断路器拒动。
(3)当3/2断路器接线方式的一串中的中间断路器拒动,或多角形接线方式相邻两台断路器中的一台断路器拒动时,应采取远方跳闸装置,使线路对端断路器跳闸并闭锁其重合闸的措施。
258.500kV断路器本体通常装有哪些保护?
答:500kV断路器本体通常装有断路器失灵保护和三相不一致保护。
500kV断路器失灵保护分为分相式和三相式。分相式采用按相启动和跳闸方式,分相式失灵保护只装在3/2断路器接线的线路断路器上;三相式启动和跳闸不分相别,一律动作断路器三相跳闸,三相式失灵保护只装在主变压器断路器上。
三相不一致保护采用由同名相动合和动断辅助触点串联后启动延时跳闸,在单相重合闸进行过程中非全相保护被重合闸闭锁。
259.3/2断路器的短引线保护起什么作用?
答:主接线采用3/2断路器接线方式的一串断路器,当其中一条线路停用,则该线路侧的隔离开关将断开,此时保护用电压互感器也停用,线路主保护停用,因此该范围短引线故障,将没有快速保护切除故障。为此需设置短引线保护,即短引线纵联差动保护。在上述故障情况下,该保护可速动作切除故障。
当线路运行,线路侧隔离开关投入时,该短引线保护在线路侧故障时,将无选择地动作,因此必须将该短引线保护停用。一般可由线路侧隔离开关的辅助触点控制,在合闸时使短引线保护停用。
260.什么是电力系统安全自动装置?
答:电力系统安全自动装置是指防止电力系统失去稳定和避免电力系统发生大面积停电的自动保护装置,如自动重合闸、备用电源和备用设备自动投入、自动联切负荷、自动低频(低压)减负荷、事故减出力、事故切机、电气制动、水轮发电机自动启动和调相改发电、抽水蓄能机组由抽水改发电、自动解列及自动快速调节励磁等。
261.试述电网中主要的安全自动装置种类和作用。
答:(1)低频、低压解列装置。地区功率不平衡且缺额较大时,应考虑在适当地点安装低频、低压解列装设,以保证该地区与系统解列后,不因频率或电压崩溃造成全停事故,同时也能保证重要用户供电。
(2)振荡(失步)解列装置。经过稳定计算,在可能失去稳定的联络线上安装振荡解列装置,一且稳定破坏,该装置自动跳开联络线,将失去稳定的系统与主系统解列,以平息振荡。
(3)切负荷装置。为了解决与系统联系薄弱地区的正常受电问题,在主要变电站安装切负荷装置,当小地区故障与主系统失去联系时,该装置动作切除部分负荷,以保证区域发供电的平衡,也可以保证当一回联络线掉闸时,其他联络线不过负荷。
(4)由动低频、低压减负荷装置。它是电力系统重要的安全自动装置之一,在电力系统发生事故出现功率缺额使电网频率、电压急剧下降时,自动切除部分负荷,防止系统频率、电压崩溃,使系统恢复正常,保证电网的安全稳定运行相对重要用户的连续供电。
(5)大小电流联切装置。主要为控制联络线正向反向过负荷而设置。
(6)切机装置。其作用是保证故障载流元件不严重过负荷;使解列后的电厂或小地区频率不会过高,功率基本平衡,以防止锅炉灭火扩大事故;可提高稳定极限。
262.什么叫自动低频减负荷装置?其作用是什么?
答:为了提高供电质量,保证重要用加供电的可靠性,当系统中出现有功功率缺额引起频率下降时,根据频率下降的程度,自动断开一部分不重要的用内,阻止频率下降,以使频率迅速恢复到正常使,这种装置叫自动低频减负荷装置。它不仅可以保证重要用户的供电而且可以避免频率下降引起的系统瓦解事故。
263.自动低频减负荷装置的整定原则是什么?
答:(1)自动低频减负荷装置动作,应确保全网及解列后的局部则频率恢复到49.50Hz以上,并不得高于51Hz。
(2)在各种运行方式下自动低频减负荷装置动作,不应导致系统其他设备过负荷和联络线超过稳定极限。
(3)自动低频减负荷装置动作,不应因系统功率缺额造成频率下降而使大机组低频保护动作。
(4)自动低频减负荷顺序应按次要负荷先切除,较重要的用户后切除。
(5)自动低频减负行装置所切除的负荷不应被自动重合闸再次投入,并应与其他安全自动装置合理配合使用。
(6)全网自动低频减负荷装置整定的切除负荷数量应按年预测最大平均负荷计算,并对可能发生的电源事故进行校对。
延伸阅读:这次是连发 电力系统1000问之二十一弹
264.自动低频减负荷装置误动的原因有哪些?
答:(1)电压突变时,因低频率继电器触点抖功而发生误动作。
(2)系统短路故障引起有功功率增加,造成频率下降而引起误动作。
(3)系统中如果旋转备用容量足够且以汽轮发电机为主,当突然世除机组或增加负荷时,不会造成按频率自动减负荷装置误动。若旋转备用容量不足或以水轮发电机为主,则在上述情况下可能会造成按频率自动减负荷装置误动作。
(4)供电电源中断时,具有大型电动机的负荷反馈可能使按频率自动减负荷装置误动作。
265.防止自动低频减负荷装置误动作的措施有哪些?
答:主要措施有:
(1)加速自动重合闸或备用电源自动投入装置的动作,缩短供电中断时间,从而可使频率降低得少一些。
(2)使按频率自动减负荷装设动作带延时,来防止系统旋转备用容量起作用前发生的误动作。在有大型同步电动机的情况下,需要1.5s以上的时间才能防止其误动作。在只有小容量感应电动机的情况下,也需要0.5—1s的时间才能防止其误动。
(3)采用电压闭锁。电压继电器应保证在短路故障切除后,电动机自启动过程中出现最低电压时可靠动作,闭合触点解除闭锁。一般整定为额定电压的65%-70%。时间继电器的动作时间,应大于低频容继电器开始动作至综合电压下降到电压闭锁继电器的返回电压时所经过的时间,一般整定为0.5s。
(4)采用按频率自动重合闸来纠正系统短路故障引起的有功功率增加,可能造成频率下降而导致按频率自动减负荷装置的误动作。由于故障引起的频率下降,故障切除后频率上升快;而真正出现功率缺额使按频率自动减负荷装置动作后,频率上升较慢。因此,按频率自动重合闸是根据频率上升的速度来决定其是否动作的,即频率上升快时动作,上升慢时不动作。
266.试述发电机电气制动的构成原理,并说明制动电阻的投入时间整定原则。
答:当发电机功率过剩转速升高时,可以采取快速投入在发电机出口或其高压母线的制动电阻,用以消耗发电机的过剩功率。制动电阻可采用水电阻或合金材料电阻,投入制动电阻的断路器的合闸时间应尽量短,以提高制动效果。制动电阻的投入时间整定原则应避免系统过制动和制动电阻过负荷,当发电机dp/dt过零时应立即切除。
267.汽轮机快关汽门有几种方式?有何作用?
答:汽轮机可通过快关汽门实现两种减功率方式:短暂减功率和持续减功率。
(1)短暂减功率用于系统故障初始的暂态过程,减少扰动引起的发电机转子过剩动能以防止系统暂态稳定破坏。
(2)持续减功审用于防止系统静稳定破坏、消除失步状态、限制设备过负荷和限制频率升高。
268.何谓集中切负荷和分散切负荷?有何优缺点?
答:集中切负荷是指系统中各个变电站的切负荷均是来自某一个中心站的安全稳定控制装置的指令。集中切负荷的测量判断装置与切负荷执行端通常不在同—变电站,必须靠通道来传递指令。集中切负荷方式判断是否切负荷比较准确,切负荷速度快,对维持系统暂态稳定效果好,但由于要采用众多通道降低了切负荷的可靠性。
分散切负荷是指各个变电站的切负荷靠各站当地的装置测量判断,因此无需通道,但各个站要准确判断系统故障是否应当切负荷比较困难,故目前只有反应负荷中心电压严重降低的分散式电压切负荷装置。
269,何谓低频自启动及调相改发电?
答:低频自启动是指水轮机和燃气轮机在感受系统频率降低到规定值时,自动快速启动,并入电网发电。
调相改发电是指当电网频率降低到规定值时,由自动装置将发电机由调相方式改为发电方式,或对于抽水蓄能机组采取停止抽水迅速转换到发电状态。
270.备用电源自动投入装置应符合什么要求?
答:备用电源自动投入装置应符合下列要求:
(1)应保证在工作电源或设备断开后,才投入备用电源或设备。
(2)工作电源或设备上的电压,不论因任何原因消失时,自动投入装置均应动作。
(3)自动投入装置应保证只动作一次。
发电厂用备用电源自动投入装置,除上述的规定外,还应符合下列要求:
(1)当一个备用电源同时作为几个工作电源的备用时,如备用电源已代替一个工作电源后,另—工作电源又被断开,必要时自动投入装置应仍能动作。
(2)有两个备用电源的情况下,当两个备用电源为两个彼此独立的备用系统时,应各装设独立的自动投入装置,当任一备用电源都能作为全厂各工作电源的备用时,自动投入装置应使任一备用电源都能对全厂各工作电源实行自动投入。
(3)自动投入装置,在条件可能时,可采用带有检定同期的快速切换方式,也可采用带有母线残压闭锁的慢速切换方式及长延时切换方式。
通常应校验备用电源和备用设备自动投入时过负荷的情况,以及电动机由启动的情况,如过负荷超过允许限度或不能保证自启动时,应有自动投入装置动作于自动减负荷。当自动投入装置动作时,如备用电源或设备投于故障,应使其保护加速动作。
271.试述低频、低压解列装置的作用?
答:当大电源切除后发洪电功率严重不平衡,将造成频率或电压降低,如用低频减负荷不能满足安全运行要求时,须在某些地点装设低频或低压解列装置,使解列后的局部电网保持安全稳定运行.以确保对重要用户的可靠供电。
延伸阅读:这次是连发 电力系统1000问之二十一弹
272.低频、低压解列装置一般装设在系统中的哪些地点?
答:在系统中的如下地点可考虑设置低频、低压解列装置:
1)系统间联络线;
2)地区系统中从主系统受电的终端变电站母线联络断路器;
3)地区电厂的高压侧母线联络断路器;
4)专门划作系统事故紧急启动电源专带厂用电的发电机组母线联络断路器。
273.何谓振荡解列装置:
答:当电力系统受到较大干扰而发生非同步振荡时,为防止整个系统的稳定被破坏,经过一段时间或超过规定的振荡周期数后,在预定地点将系统进行解列,该执行振荡解列的自动装段称为振荡解列装置。
274.何谓区域性稳定控制系统?
答:对于一个复杂电网的稳定控制问题,必须靠区域电网中的几个厂站的稳定控制装置协调统一才能完成。即每个厂站的稳定控制装置不仅靠就地测量信号,还要接受其他厂站传来的信号,综合判断才能正确进行稳定控制。这些分散的稳定控制装置的组合,我们统称为区域性稳定控制系统。
275.电网必须具有哪些充分而可靠的通信通道手段?
答:(1)各级调度中心控制室(有调度操作指挥关系时)和直接调度的主要发电厂与重要变电站间至少应有两个独立的通信通道。
(2)所将新建的发、送、变电工程的规划与设计,必须包括相应的通信通道部分,并与有关工程配套投入运行。通信通道不健全的新建发电厂和变电站不具备投入运行的条件。
(3)通信网规划建设应综合考虑作为通信、调度自动化、远动、计算信息、继电保护及安全自动装置的通道。
(4)如某些特定通道中断会影响电网的可靠运行,则必须从规划设计与运行上及早安排典事备用的通道或其他措施。
(5)通信设备应有可靠的电源以及自动投入的事故备用电源、其容量应满足电源中断时间的要求。
276.电力系统通信网的特点是什么?
答:电力系统通信网的特点如下:
(1)电力系统通信网的结构取决于电力网的结构、运行及管理层次,邮电通信网的结构取决于国家行政管理区划。
(2)电力系统通信网的经济性隐含于电网的经济性之中,通信网往往把本身经济性放在第二位、而以电网的安全生产及管理为第一原则。
(3)电力系统通信网的干线及专线容量、信息交换容量以及话务量都比邮电通信网小,但是中继局向多,功能强,可靠性要求高,电力系统通信网是一种专用通信网。
277.电力系统通信网的主要功能是什么?
答:电力系统通信网为电网生产运行、管理、基本建设等方面服务。其主要功能应满足调度电话、行政电话、电网自动化、继电保护、安全自动装置、计算机联网、传真、图像传输淬各种业务的需要。
278.简述电力系统通信网的子系统及其作用。
答:电力系统通信网的子系统为:
(1)调度通信子系统,该系统为电网调度服务。
(2)数据通信子系统,这个系统为调度自动化、继电保护、安全自动装置、计算机联网答各种数据传输提供通道。
(3)交换通信子系统,这个系统为电力生产、基建和管理部门之间的信息交换服务。
279.简述电力系统采用的几种主要通信方式和特点。
答:电力系统几种主要的通信方式如下:
(1)明线通信:采用架空明线来传递电信号,这种方式易受自然灾害而影响通信质量。
(2)电缆通信:采用埋设在地下的电缆来传递电信号,与架空明线比,电缆的优点是容纳线对的数量较多,受气候影响和外界的损害较少,埋在地下时,保密性较好;缺点是衰耗比明线大得多,投资也比明线高。
(3)电力载波通信:利用高压输电线传递高频信号,可以省去昂贵的线路投资,故目前大过采用。电力载波通信要求在线路上增装阻波器和耦合电容器,必须采用频率分割和载频阻塞法减少各载波通道之间的电磁耦合串音影响。
(4)光纤通信:就是将要传输的语音、图像和数据信号先变成光信号,由光纤进行传输。光纤通信具有通信容量大、抗干扰能力强、中继距离长等优点,缺点是目前造价高。
(5)微波通信:将要传播的信号调制在微波上进行传递,微波通信与光纤通信类似具有容量大,抗干扰能力较强的优点。由于微波在空间基本上是沿直线传播,所以微波在地面的传播距离受到限制,为了进行远距离微波通信,常在两个通信点之间设立多个接力站,将信号一站一站地传递下去,这种方式称为微波中继通信。
(6)卫星通信:适用于边远地区及个别地区的通信。通话时,何时间延迟和回声。由于运行费用高,话路数量受到一定的限制。
延伸阅读:这次是连发 电力系统1000问之二十一弹
280.调度自动化向调度员提供反映系统现状的信息有哪些?
答:(1)为电网运行情况的安全监控提供精确而可靠的信息,包括有关的负荷与发电情况,输电线路的负荷情况,电压、有功及无功潮流,稳定极限,系统频率等。
(2)当电网运行条件出现重要偏差时,及时自动告警,并指明或同时起动纠偏措施。
(3)当电网解列时,给出显示,并指出解列处所。
281.什么是能量管理系统(EMS)?其主要功能是什么?
答:EMS能量管理系统是现代电网调度自动化系统(含硬、软件)总称。其主要功能由基础功能和应用功能两个部分组成。基础功能包括:计算机、操作系统和EMS支撑系统。应用功能包括:数据采集与监视(SCADA)、发电控制(AGC)与计划、网络应用分析三部分组成。
282.电网调度自动化系统由哪几部分组成?简述各部分作用。
答:电网调度自动化系统,其基本结构包括控制中心、主站系统、厂站端(RTU)和信息通道三大部分。根据所完成功能的不同,可以将此系统划分为信息采集和执行子系统、信息传输子系统、信息处理子系统和人机联系子系统,如图12所示。
信息采集和执行子系统的基本功能是在各发电厂、变电站采集各种表征电力系统运行状态的实时信息。
另外,此系统还负责接收和执行上级调度控制中心发出的操作、调节或控制命令。
信息传输子系统为信息采集和执行子系统和调度控制中心提供了信息交换的桥梁,其核心是数据通道、它经调制解调器与RTU及主站前置机相连。
信息处理子系统是整个调度自动化系统的核心,以电子计算机为它要组成部分。该子系统包含大量的直接面向电网调度、运行人员的计算机应用软件,完成对采集到的信息的各种处理及分析计算,乃至实现对电力设备的自动控制与操作。
人机联系子系统将传输到调度控制中心的各类信息进行加工处理,通过各种显示设备、打印设备和其他输出设备,为调度人员提供完整实用的电力系统实时信息。调度人员发出的遥控、遥调指令也通过此系统输入,传送给执行机构.
283.电网调度自动化SCADA系统的作用是什么?其基本功能包括哪几部分?
答:调度中心采集到的电网信息必须经过应用软件的处理,才能最终以各种方式服务于调度生产。在应用软件的支持下,调度员才能监视到电网的运行状况,才能迅速有效地分析电网运行的安全与经济水平,才能迅速完成事故情况下的判断、决策,才能对远方厂、站实施有效的遥控和遥调。
目前,国内调度运行中已经使用的应用软件基本功能为:
1)数据采集与传输;
2)安全监视、控制与告警;
3)制表打印;
4)特殊运算;
5)事故追忆。
284.电网调度自动化系统高级应用软件包括哪些?
答:电网调度自动化系统高级应用软件一般包括:负荷预报、发电计划、网络拓扑分析、电力系统状态估计、电力系统在线潮流、最优潮流、静态安全分析、自动发电控制、调度员培训模拟系统等。
285.什么是自动发电控制(AGC)?
答:自动发电控制简称AGC(AtltomaticGenerationControl),它是能量管理系统(EMS)的重要组成部分。
按电网调度中心的控制目标将指令发送给有关发电厂或机组,通过电厂或机组的自动控制调节装置,实现对发电机功率的自动控制。
286:AGC有哪几种控制模式?在区域电网中,网、省调AGC控制模式应如何选择?在大区联网中,AGC控制模式应如何选择?
答:AGC有三种控制模式:
1)定频率控制模式;
2)定联络线功率控制模式;
3)频率与联络线偏差控制模式。
以上三种都是一次控制模式,AGC还有两种二次控制模式:
1)时间误差校正模式;
2)联络线累积电量误差校正模式。
区域电网中,网调一般担负系统调频任务,其控制模式应选择定频率控制模式;省调应保证按联络线计划调度,其控制模式应选择定联络线控制模式。
在大区互联电网中,互联电网的频率及联络线交换功率应由参与互联的电网共同控制,其控制模式应选择联络线偏差控制模式。
延伸阅读:这次是连发 电力系统1000问之二十一弹
287.什么叫ACE?如何计算?
答:ACE(AreaControlError)即区域控制误差的简称,其计算公式为
ACE=△PTβ△f
式中入△PT--联络线功率交换误差;
△f--频率偏差;
β--频率偏差系数。
对定频率控制模式,ACE只取右边项。
对定联络线功率印制模式,ACE只取左边项。
对频率联络线偏差控制模式,ACE两项都取。
如果还加上二次控制模式,ACE还需增加相应的附加项。
288.什么叫发电源?对发电源常用的控制模式有哪些?
答:发电源是AGC的一个控制对象,可以是一台机组,几台并列运行的机组或整个电厂或几个并列运行的电厂。AGC软件包发出的设点控制指令都是针对发电源的。
对发电源常用的控制模式有:
(1)调节模式。正常的AGC调节模式,参与对ACE的校正控制,调节的基准功率是在线经济调度算出的功率,因此是随负荷水平浮动的,并由等微增原则在参与调节的发电源间进行分配。
(2)基点模式。发电源只响应调度员输入的基点功率,对ACE不响应,不参与校正ACE的控制。
(3)计划模式。发电源只响应于预先输入的计划曲线,对ACE不响应,不参与校正ACE的控制。
(4)爬坡模式。发电源从当前功率变化到新的基点功率时的模式。新的基点功率可以由调度员输入设定,或通过计划模式到达预定时间后自动设定。爬坡速度在数据库中设定。
(5)基点调节模式。与调节模式相同,只是调节的基准功率是调度员输入的基点功率。
(6)计划调节模式。与调节模式相同,只是调节的基准功率是计划曲线中设定的功率。
(7)基点增援模式。正常情况下与基点模式相同,紧急情况下与调节模式相同。
(8)计划增援模式。正常情况下与计划模式相同,紧急情况下与调节模式相同。
289.发电源设点功率按什么原则计算?
答:发电源设点功率是根据ACE的大小按不同原则计算。ACE按其大小分为死区、正常分配区、允许控制区及紧急支援区。对不同的区域有不同的分配策略。在死区,只对功率偏离理想值大的发电源实现成对分配策略,计算新的设点,其余发电源不重新分配功率。在正常分配区,按照正常考虑经济性的参与因子将ACE分配到各发电源,计算其设点功率。在允许控制区,只限制能将ACE减小的发电源参与控制,计算其设点功率。在紧急支援区,按照发电源调整速率的快慢来分配ACE,计算其设点功率,即让调整速率快的发电源承担更多的调整功率
290.EMS系统中网络分扩软件有哪两种运行模式?与离线计算软件有什么区别?
答:EMS系统中网络分析软件的运行模式有两种:
(1)实时模式。根据实时量测数据对运行软件的原始数据不断刷新并进行实时计算或按一定周期定期计算。如实时网络拓扑、状态估计、调度员潮流等。
(2)研究模式:运行软件的原始数据不进行刷新,可以是实时快照过来的某一时间断面的数据,也可以是人工置入的数据,可用来对电网运行状态进行研究,如调度员潮流、安全分析等。
EMS中的网络分析软件与离线计算软件有一定的区别,一是其实时性,即使是研究模式,也可以从实时系统中取快照进行分析研究。二是其快速性要求,为满足快速性,在数学模型上没有离线计算软件考虑得更全面。
291.试述网络拓扑分析的概念。
答:电网的拓扑结构描述电网中各电气元件的图形连接关系。屯网是由若干个带电的电气岛组成的,每个电气岛又由许多母线及母线间相连的电气元件组成。每条母线又由若干个母线段元素通过断路器、隔离开关相连而成。网络拓扑分析是根据电网中各断路器、隔离开关的遥信状态,通过一定的搜索算法,将各母线段元素连成某条母线,并将母线与相连的各电气元件组成电气岛,进行网络接线辨识与分析。
292.什么叫状态估计?其用途是什么?运行状态估计必须具备什么基础条件?
答:SCADA系统采集的实时数据经过厂站端电缆、变送器、RTU、远动通道、通信配线架、远动电缆、前置机等诸多环节才到达主站系统,任何一个环节不正常都会影响到数据的正确性,在RTU死机或通信中断的情况下,还会出现死数据或坏数据。直接用这些实测数据进行电网实时分析计算,可信度是不高的。
电力系统的实时量测系统配置一般都有较大的冗余性,这种冗余性表现在以下的两个方面:
1.母线连接元件量测的冗余性
对连接有N个元件的母线,按照克希霍夫定律只要N-1个元件有量测,第N个元件的电气量即可根据母线平衡的原则算出。实际上往往全部N个元件都有量测,这样对每一母线都存在冗余度为1的冗余性。
2.母线状态量及注入电气量量测的冗余性
在母线状态量(电压幅值与相角)及注入量(有功功率、无功功率)四个电气量中,两个是独立的,两个是可导出的。如果量测量多于两个即具有冗余性。一般母线遥测量包括有母线电压幅值及由所连各元件有功、无功功率所形成的两个注入量,具有很大的冗余性,有的元件还有电流量的量测,则更增大了量测的冗余性。
电力系统状态估计就是利用实时量测系统的冗余性,应用估计算法来剔除坏数据,提高数据精度及保持数据的前后一致性,为网络分析提供可信的实时潮流数据。
运用状态估计必须保证系统内部是可观测的.系统的量测要有一定的冗余度。在缺少量测的情况下作出的状态估计是不可用的。
延伸阅读:这次是连发 电力系统1000问之二十一弹
293.什么叫静态安全分析及动态安全分析?
答:安全分析是对运行中的网络或某一研究态下的网络按N-1原则研究—个个运行元件因故障退出运行后网络的安全情况及安全裕度。静态安全分析是研究元件有无过负荷及母线电压有无越限。动态安全分析是研究线路功率是否超稳定极限。
从功能上安全分析分为两大模块:一块为故障排序,即按N—l故障严重程度自动排序;一块为安全评估,对于静态安全分析来讲就是进行潮流计算分析,对动态安全分析则要进行稳定计算分析。
294.最优潮流与传统经济调度的区别是什么?
答:传统经济调度只对有功进行优化,虽然考虑了线损修正,也只考虑了有功功率引起线损的优化。传统经济调度一般不考虑母线电压的约束,对安全约束一般也难以考虑。
最优潮流除了对有功及耗量进行优化外,还对无功及网损进行了优化。此外,最优潮流还考虑了母线电压的约束及线路潮流的安全约束。
295.调度员培训模拟系统(DTS)的作用是什么?对调度员培训模拟系统有哪些要求?
答:调度员培训模拟系统主要用于调度员培训,它可以提供一个电网的模拟系统,调度员通过它可以进行模拟现场操作及系统反事故演习,从而提高调度员培训效果,积累电网操作及事故处理的经验。
调度员模拟培训系统应尽量满足以下三点要求:
(1)真实性。电力系统模型与实际电力系统具有相同的动态、静态特性,尽可能为培训真实地再现实际的电力系统。
(2)一致性。学员台的环境与实际电网调度控制中心的环境要尽量一致,使学员在被培训时有临场感。
(3)灵活性。在教员台可以灵活地控制培训的进行,可以灵活地模拟电力系统的各种操作和故障。
296.工业DCS控制系统
DCS系统是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂应运而生的综合控制系统,它是计算机技术、系统控制技术、网络通讯技术和多媒体技术相结合的产物,可提供窗口友好的人机界面和强大的通讯功能。是完成过程控制、过程管理的现代化设备。
自动化控制事业部拥有强大的技术力量和认真负责的施工调试队伍,能够针对不同行业、不同项目,在充分调查了计算机技术、网络技术、应用软件技术、信号处理技术的基础上,使用各种分散控制系统(DCS),高质量、高标准的完成工程设计、组态、成套供货、现场启动调试、性能测试及考核验收,推出切实可行的技术方案。
系统的主要技术概述
˙系统主要有现场控制站(I/O站)、数据通讯系统、人机接口单元(操作员站OPS、工程师站ENS)、机柜、电源等组成。系统具备开放的体系结构,可以提供多层开放数据接口。
˙硬件系统在恶劣的工业现场具有高度的可靠性、维修方便、工艺先进。底层汉化的软件平台具备强大的处理功能,并提供方便的组态复杂控制系统的能力与用户自主开发专用高级控制算法的支持能力;易于组态,易于使用。支持多种现场总线标准以便适应未来的扩充需要。
˙系统的设计采用合适的冗余配置和诊断至模件级的自诊断功能,具有高度的可靠性。系统内任一组件发生故障,均不会影响整个系统的工作。
˙系统的参数、报警、自诊断及其他管理功能高度集中在CRT上显示和在打印机上打印,控制系统在功能和物理上真正分散,
˙整个系统的可利用率至少为99.9%;系统平均无故障时间为10万小时,实现了核电、火电、热电、石化、化工、冶金、建材诸多领域的完整监控。
˙“域”的概念。把大型控制系统用高速实时冗余网络分成若干相对独立的分系统,一个分系统构成一个域,各域共享管理和操作数据,而每个域内又是一个功能完整的DCS系统,以便更好的满足用户的使用。
˙网络结构可靠性、开放性及先进性。在系统操作层,采用冗余的100Mbps以太网;在控制层,采用冗余的100Mbps工业以太网,保证系统的可靠性;在现场信号处理层,12Mbps的PROFIBUS总线连接中央控制单元和各现场信号处理模块。
˙标准的Client/Server结构。MACS系统的操作层采用Client/Server结构
˙开放并且可靠的操作系统。系统的操作层采用WINDOWSNT操作系统;控制站采用成熟的嵌入式实时多任务操作系统QNS以确保控制系统的实时性、安全性和可靠性。
˙标准的控制组态软件。系统采用IEC1131-3标准的控制组态工具,可以实现任何监测、控制要求。
˙可扩展性和可裁剪性,保证经济性。
297.DCS与PLC的区别
PLC善于逻辑控制,如实现电气回路逻辑控制,属于强电设备,主要用于控制电机的开停等;
DCS长于模拟量控制,属于弱电设备,主要用于液位、流量、温度等模拟控制。
LC和DCS由于在早期开发时,是由两种技术人员开发的,面向不同的控制对象。PLC主要针对于汽车制造,模拟量极少甚至没有,开发人员主要是电气技术人员,它用计算机的逻辑运算代替继电器逻辑。稍晚一点推向市场的是DCS,它是由原来的仪表技术人员开发的,它在运算放大器的基础上用计算机的模拟运算代替原来的模拟运算。这两者所研究的内容不同,DCS首先应用在石化系统,后来两者都想占有市场,PLC增加了模拟量的运算,DCS开发了逻辑运算。但两者在新开发的部分都存在有一些缺陷,PLC开发的模拟量运算功能块少,编程较为复杂,价格也比较昂贵。每一个回路大概要2300美金左右,DCS开发的逻辑运算一个与非门的运算需要几十毫秒,而PLC只要零点几毫秒。
关于维护,DCS的维护费用高,对接地电阻要求严格,经常会由于接地电阻不能满足要求而烧坏模件。PLC对接地电阻要求不严格,所以维护费用比较低。
因此,如果模拟量比较多的情况,需要高级的控制方案,如:专家系统、模型控制、一定要DCS。如果开关量比较多,建议使用PLC。
延伸阅读:这次是连发 电力系统1000问之二十一弹
298.变频器原理介绍
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
关键词:变频器原理样本内容
变频器选型:
变频器选型时要确定以下几点:
1)采用变频的目的;恒压控制或恒流控制等。
2)变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。
3)变频器与负载的匹配问题;
I.电压匹配;变频器的额定电压与负载的额定电压相符。
II.电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。
III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。
4)在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。
5)变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。
6)对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。
变频器控制原理图设计:
1)首先确认变频器的安装环境;
I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。
II.环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。
III.腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。
IV.振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。设备运行一段时间后,应对其进行检查和维护。
V.电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。
2)变频器和电机的距离确定电缆和布线方法;
I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。
II.控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。
III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。
IV.与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。
3)变频器控制原理图;
I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。
II.控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。
4)变频器的接地;
变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。
延伸阅读:这次是连发 电力系统1000问之二十一弹
变频器控制柜设计:
变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题
1)散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。
2)电磁干扰问题:
I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。
II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。
3)防护问题需要注意以下几点:
I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。
II.防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。
III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。
变频器接线规范:
信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。
信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。
1)模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.75mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。
2)为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。
变频器的运行和相关参数的设置:
变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。
控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。
最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
常见故障分析:
1)过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。
2)过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。
3)欠压:说明变频器电源输入部分有问题,需检查后才可以运行。
小结:
1)总之,在设计、安装、使用变频器时一定要遵从变频器使用说明书的指导。
2)各电气设计人员,现场电气调试人员可以在此基础上完善此变频器参考。
299变电站自动化系统的通信网络及传输规约选择
变电站自动化系统实质上是由多台微机组成的分层分布式控制系统,包括微机监控、微机保护、电能质量自动控制等多个子系统。在各个子系统中,往往又由多个智能模块组成。例如:在微机保护子系统中,有变压器保护、电容器保护、各种线路保护等。因此在变电站自动化系统内部,必须通过内部数据通信,实现各子系统内部和各子系统之间的信息交换和信息共享,以减少变电站二次设备的重复配置并简化各子系统的互连,既减少了重复投资,又提高了系统整体的安全性和可靠性。
延伸阅读:这次是连发 电力系统1000问之二十一弹
2变电站通信网络的要求
由于数据通信在变电站自动化系统内的重要性,经济、可靠的数据通信成为系统的技术核心,而由于变电站的特殊环境和自动化系统的要求,变电站自动化系统内的数据网络应满足下列要求:①快速的实时响应能力;②很高的可靠性;③优良的电磁兼容性能;④分层式结构[1]。
1997年8月国际大电网会议上,WG34.03工作组提出了变电站内通信网络传输时间要求:设备层和间隔层之间、间隔内各设备之间、间隔层各间隔单元之间为1~100ms,间隔层和变电站层之间为10~1000ms,变电站层各设备之间、变电站和控制中心之间为1000ms。各层之间的数据流峰值为:设备层和间隔层之间数据流大概250kb/s,取决于模拟量的采样速度,间隔层各单元之间数据流大概60kb/s或130kb/s,取决于是否采用分布母线保护;间隔层和变电站层之间及其他链路之间数据流大概在100kb/s及以下。
3内部数据通信网的选择
数据通信网是构成变电站自动化系统的关键环节,内部通信网络的标准化是使变电站自动化迈向标准化的难点之一,受性能、价格、硬件、软件、用户策略等诸多因素的影响,目前在选择什么“接口网络”上很难达成一致。
网络特性主要由拓扑结构、传输媒体、媒体存取方式来决定。网络的选择应符合国际国内的有关标准;应选择当前的主流产品,应得到实力雄厚的软硬件商的支持;产品应满足变电站运行要求;具有较高的性能价格比[2]。
(1)35kV变电站通信网络
在小规模的35kV变电站和110kV终端变电站,可考虑使用RS422和RS485组成的网络;当变电站规模较大时应考虑选择现场总线网络。RS422和RS485串口传输速率指标是不错的,在1000m内传输速率可达100kb/s,短距离速率可达10Mb/s,RS422串口为全双工,RS485串口为半双工,媒介访问方式为主从问答式,属总线结构。这两个网络的不足在于接点数目比较少,无法实现多主冗余,有瓶颈问题,RS422的工作方式为点对点,上位机一个通信口最多只能接10个节点,RS485串口构成一主多从,只能接32个节点,此外有信号反射、中间节点问题。LonWorks网上的所有节点是平等的,CAN网可以方便的构成多主结构,不存在瓶颈问题,两个网络的节点数比RS485扩大多倍,CAN网络的节点数理论上不受限制,一般可连接110个节点。
(2)110kV变电站通信网络
中型枢纽110kV变电站节点数一般为40个左右,多主冗余要求和节点数量增加使RS422和RS485难以胜任。现场总线却能得心应手,总线网将网上所有节点连接在一起,可以方便的增减节点;具有点对点、一点对多点和全网广播传送数据的功能;常用的有LonWorks网、CAN网。两个网络均为中速网络,500m时LonWorks网传输速率可达1Mb/s,CAN网在小于40m时达1Mb/s,CAN网在节点出错时可自动切除与总线的联系,LonWorks网在监测网络节点异常时可使该节点自动脱网,媒介访问方式CAN网为问答式,LonWorks网为载波监听多路访问/冲撞检测(CSMA/CD)方式,内部通信遵循LonTalk协议。
300.新一代电网调度自动化系统
电网调度自动化系统发展到今天已经三代。70年代基于专用计算机和专用操作系统的SCADA系统称为第一代,如电力自动化研究院为华北电网开发的SD176系统;80年代基于通用计算机的EMS称为第二代,如四大电网、南方、广西、贵州、四川、云南等单位采用VAX/VMS的SCADA/EMS系统;90年代基于RISC/UNIX的开放式分布式EMS/DMS称为第三代,如国家电力调度通信中心、福建、山东、西北、宁夏、湖北、湖南、安徽等单位引进的SCADA/EMS,电力科学研究院和东北电力集团公司合作开发的CC—2000系统,电力自动化研究院开发的RD—800系统、OPEN—2000系统、SD—6000系统。南京力导电子系统研究所开发的SE-900系统等,第三代系统已发展了近10年。随着计算机、数据网络、数据库等技术的飞速发展以及电力市场的要求,第四代电网调度自动化系统的基础条件已经具备,预计将于21世纪初诞生,该系统的主要特征是采用JAVA、因特网、面向对象等技术,综合考虑电力市场环境中的安全运行及商业化运营的要求。
延伸阅读:这次是连发 电力系统1000问之二十一弹