摘要:生物质燃烧技术是大规模高效洁净利用生物质能的一种重要方式,也是目前生物质能的各种利用转化途径中最成熟、最简便可行的方式之一,从物质的燃烧特性出发,分析了目前生物质各种常规特性测试方法的不足,介绍了国内外各种生物质燃烧技术的特点及其应用情况,并对生物质燃烧存在的问题及相应解决

首页 > 火电 > 火电动态 > 评论 > 正文

【探析】生物质燃烧技术现状与展望

2015-12-09 09:59 来源:新能源网能源通 

摘要:生物质燃烧技术是大规模高效洁净利用生物质能的一种重要方式,也是目前生物质能的各种利用转化途径中最成熟、最简便可行的方式之一,从物质的燃烧特性出发,分析了目前生物质各种常规特性测试方法的不足,介绍了国内外各种生物质燃烧技术的特点及其应用情况,并对生物质燃烧存在的问题及相应解决措施进行了探讨,最后对我国生物质燃烧技术的发展进行了展望。

0引言

生物质能是一种清洁可再生能源,几乎不含硫、含氮很少,且具有CO2近零排放的优点。据估计,地球上每年生物能总量约1400亿~1800亿千吨,相当于目前世界总能耗的10倍。我国拥有丰富的生物质资源,据2006年的统计,可供开发的生物质资源至少能达到5.4亿吨标准煤。其中,每年农作物秸秆量有7.2亿多吨,林业剩余物资源1.25亿多吨,而未来可利用边际土地种植的速生林等能源作物量更大。在生物质的各种利用转化途径中,生物质燃烧技术无疑是目前适合我国国情的、生物质大规模高效洁净利用途径中最成熟、最简便可行的方式之一,在不需对现有燃烧设备作较大改动的情况下即可获得很好的燃烧效果,其推广应用对于推动我国生物质能利用技术的发展、保护环境与改善生态、提高农民生活水平等具有重要的作用。

相关阅读:【史上最全解读】秸秆发电产业链

1生物质燃烧特性与分析测试标准

图1所示为某玉米秆与黄陵烟煤在空气气氛下的TG-DTG曲线。由图1可知,生物质与煤的燃烧过程非常相似,可大致分为预热干燥、挥发分的析出、燃烧与焦炭形成和残余焦炭的燃烧、燃尽三个阶段。但是,生物质的挥发分析出温度和最大失重速率峰值均远低于煤,更易着火燃烧,表现出与煤不同的燃烧特性,这主要与生物质和煤的组成不同有关。已有经验表明,直接将燃煤锅炉改烧生物质往往会出现很大的问题。因此,生物质燃烧设备的设计和运行方式的选择必须从生物质自身燃烧特性出发,才能保证运行的经济性和可靠性。

表1所示为几种常见生物质燃料和煤的常规分析结果。与煤相比,生物质中的挥发分含量高、固定碳和灰分含量低,元素组成中碳含量低、氧含量高而热值低,这正是两者燃烧特性有很大差别的原因。然而,目前国内有关生物质常规特性的分析测试大部分仍采用原有的煤的分析测试标准,与生物质的实际特性并不相符,美国材料与试验协会(ASTM)已经出台了专门的生物质分析标准。

生物质灰中的大量碱金属(K、Na)在燃烧过程中的挥发迁徙极易造成聚团、结渣和腐蚀等,其含量的准确测定显得尤为重要。表2所示为在国标和ASTM标准下生物质灰成分的测定结果。

由表2可知,在两个不同标准下,生物质的灰成分差别很大,而ASTM标准则更加符合实际应用过程。燃烧设备及受热面等的高温氯腐蚀是生物质燃烧应用中需要面对的另一个重要问题,在生物质的常规测试分析中补充测量生物质中的氯含量十分必要。为了更好的研究和利用生物质能,我国应尽快研究制定出相应的生物质分析测试的标准方法。

2生物质直接燃烧技术

生物质直接燃烧是指纯烧生物质,主要分为炉灶燃烧和锅炉燃烧。传统的炉灶燃烧方式燃烧效率极低,热效率只有10%~18%,即使是目前大力推广的节柴灶,其热效率也只有20%~25%。生物质锅炉燃烧采用先进的燃烧技术,把生物质作为锅炉的燃料,以提高生物质的利用效率,适应于相对集中、大规模利用生物质资源。锅炉按照燃烧方式的不同可分为层燃炉和流化床锅炉等,以下就生物质层燃和流化床燃烧作重点介绍。

2.1层燃技术

传统的层燃技术是指生物质燃料铺在炉排上形成层状,与一次配风相混合,逐步地进行干燥、热解、燃烧及还原过程,可燃气体与二次配风在炉排上方的空间充分混合燃烧。锅炉形式主要采用链条炉和往复推饲炉排炉。生物质层燃技术被广泛应用在农林业废弃物的开发利用和城市生活垃圾焚烧等方面,可适于燃烧含水率较高、颗粒尺寸变化较大的生物质燃料,具有较低的投资和操作成本,一般额定功率小于20MW。

在丹麦,开发了一种专门燃烧已经打捆秸秆的燃烧炉,采用液压式活塞将一大捆的秸秆通过输送通道连续地输送至水冷的移动炉排。由于秸秆的灰熔点较低,通过水冷炉墙或烟气循环的方式来控制燃烧室的温度,使其不超过900e。丹麦ELSAM公司出资改造的Benson型锅炉采用两段式加热,由4个并行的供料器供给物料,秸秆、木屑可以在炉栅上充分燃烧,并且在炉膛和管道内还设置有纤维过滤器以减轻烟气中有害物质对设备的磨损和腐蚀。经实践运行证明,改造后的生物质锅炉运行稳定,并取得了良好的社会和经济效益。

在我国,已有许多研究单位根据所使用的生物质燃料的特性,开发出了各种类型生物质层燃炉,实际运行效果良好。他们针对所使用原料的燃烧特性不同,对层燃炉的结构都进行了富有成效的优化,炉型结构包括双燃烧室结构、闭式炉膛结构及其他结构,这些均为我国生物质层燃炉的开发设计提供了宝贵的经验。应当看到的是,我国生物质层燃技术与国外相比,仍存在较大的差距,应当进一步加大研发力度,开发出具有我国特色的先进的生物质层燃技术,以增强我国在生物质燃烧技术领域的竞争力。

2.2流化床技术

流态化燃烧具有传热传质性能好、燃烧效率高、有害气体排放少、热容量大等一系列的优点,很适合燃烧水分大、热值低的生物质燃料。流化床燃烧技术是一种相当成熟的技术,在矿物燃料的清洁燃烧领域早已进入商业化使用。将现有的成熟技术应用于生物质的开发利用,在国内外早已进行了广泛深入的研究,并已进入商业运行。

目前,国外采用流化床燃烧技术开发利用生物质能已具有相当的规模。美国爱达荷能源产品公司已经开发生产出燃生物质的流化床锅炉,蒸汽锅炉出力为4.5~50t/h,供热锅炉出力为36.67MW;美国CE公司利用鲁奇技术研制的大型燃废木循环流化床发电锅炉出力为100t/h,蒸汽压力为8.7MPa;美国B&W公司制造的燃木柴流化床锅炉也于20世纪80年代末至90年代初投入运行。此外,瑞典以树枝、树叶等林业废弃物作为大型流化床锅炉的燃料加以利用,锅炉热效率可达到80%;丹麦采用高倍率循环流化床锅炉,将干草与煤按照6:4的比例送入炉内进行燃烧,锅炉出力为100t/h,热功率达80MW。

我国自20世纪80年代末开始,对生物质流化床燃烧技术也进行了深入的研究,国内各研究单位与锅炉厂合作,联合开发了各种类型燃生物质的流化床锅炉,投入生产后运行效果良好,并进行了推广,还有许多出口到了国外,这对我国生物质能的利用起到了很大的推动作用。例如华中科技大学根据稻壳的物理、化学性质和燃烧特性,设计了以流化床燃烧方式为主,辅之以悬浮燃烧和固定床燃烧的组合燃烧式流化床锅炉,试验研究证明,该锅炉具有流化性能良好、燃烧稳定、不易结焦等优点,现已经获得国家专利。

3生物质成型燃料燃烧技术

生物质成型燃料体积小,密度大,储运方便,并且燃料致密,无碎屑飞扬,使用方便、卫生,燃烧持续稳定、周期长,燃烧效率高,燃烧后的灰渣及烟气中污染物含量小,是一种清洁能源。然而目前我国生物质成型燃料的规模仍然不大,成型燃料的压制设备仍不成熟,成本较高,目前还只是作为采暖、炊事及其他特定用途的燃料,使用范围还有待拓展。

生物质成型燃料与常规生物质和煤相比,其燃烧特性都有很大差别。生物质成型燃料燃烧过程中炉内空气流动场分布、炉膛温度场和浓度场分布、过量空气系数大小、受热面布置等都需要重新设计考虑。国外如日本、美国及欧洲一些国家生物质成型燃料燃烧设备已经定型,并形成了产业化,在加热、供暖、干燥、发电等领域已普遍推广应用。这些国家的生物质成型燃料燃烧设备具有加工工艺合理、专业化程度高、操作自动化程度好、热效率高、排烟污染小等优点。我国自20世纪80年代开始进行生物质成型燃料燃烧技术的研究和开发,目前已经取得了一系列的成果和进展,但是相关技术与国外仍存在较大的差距。当前直接引进国外先进技术并不适合我国国情,国外大部分都是采用林业残余物(如木材等)压制成型燃料,这与我国生物质资源主要以农作物秸秆为主的情况并不相符,开发具有我国自主知识产权的高效经济的生物质成型燃料燃烧技术将是我国未来发展的一个重要方向。

4生物质与煤混烧技术

生物质由于其能量密度低,形状不规则,空隙率高,热值低,不利于长距离运输,且易导致锅炉炉前热值变化大,燃烧不稳定;同时,由于生物质燃料供应受到季节性和区域性影响,难以保证连续、稳定的供应,因此,一般的生物质纯烧锅炉很难保证其效率和经济性。采用生物质与煤混烧技术能够克服生物质原料供应波动的影响,在原料供应充足时进行混燃,在原料供应不足时单烧煤。利用大型电厂混燃发电,无需或只需对设备进行很小的改造,就能够利用大型电厂的规模经济,热效率高,在现阶段是一种低成本、低风险的可再生能源利用方式,不但有效弥补了化石燃料的短缺,减少了传统污染物(SO2,NOx等)和温室气体(CO2,CH4等)的排放,保护了生态环境,而且促进了生物质燃料市场的形成,克服了纯烧生物质锅炉的缺点,发展了区域经济,提供了就业机会。在许多国家,混合燃烧是完成CO2减排任务最经济的技术选择。

国外的生物质与煤混合燃烧技术已进入到商业示范阶段,在美国和欧盟等发达国家已建成一定数量生物质与煤混合燃烧发电示范工程,电站装机容量通常在50~700MW之间,少数系统在5~50MW之间,燃料包括农作物秸秆、废木材、城市固体废物以及淤泥等。混合燃烧的主要设备是煤粉炉,亦有发电厂使用层燃炉和采用流化床技术;另外,将固体废物(如生活垃圾或废旧木材等)放入水泥窑中焚烧也是一种生物质混合燃烧技术,并已得到应用。以荷兰Gelderland电厂为例,它是欧洲在大容量锅炉中进行混合燃烧最重要的示范项目之一,以废木材为燃料,锅炉机组选用635MW煤粉炉,木材燃烧系统独立于燃煤系统,对锅炉运行状态没有影响。该系统于1995年投入运行,现已商业化运行,每年平均消耗约6万t木材(干重),相当于锅炉热量输入的3%~4%,替代燃煤约4.5万,t输出电力20MW,为未来混合燃烧项目提供了直接经验。

我国生物质混合燃烧技术的研究起步较晚,目前还缺乏先进的技术和设备。同时,由于生物质与煤混烧难以计量和管理,使得国家在相关政策方面支持不够,国家鼓励对常规火电项目进行掺烧生物质的技术改造,但是当生物质掺烧量按照热值换算低于80%时,应按照常规火电项目进行管理,并不享受政策优惠,这在很大程度上限制了我国生物质混烧技术的发展,相关方面的研究和应用也不多。

华中科技大学对生物质与煤的混烧特性及污染物排放特性进行了广泛深入的研究,发展了生物质与煤的流化床燃烧技术,开发了各种木屑、蔗渣与煤的混烧锅炉,其中在广西露塘糖厂进行的35t/h蔗渣与煤混烧的循环流化床锅炉改造已经获得了成功的工业应用,取得了良好的运行效果。2005年12月,山东枣庄十里泉秸秆与煤粉混烧发电厂竣工投产,引进了丹麦BWE公司的技术与设备,对发电厂1台14kW机组的锅炉燃烧器进行了秸秆混烧技术改造,预计年消耗秸秆10.5万,t可替代原煤约7156万t。

5生物质燃烧发电概况

生物质直燃发电技术由于成本低,利用量大,一直被世界各国所重视。生物质燃料的运输成本高,同时季节性和区域性强,为了克服生物质燃料供应波动的影响,大型电厂一般都采用混燃发电技术。同时为了提高生物质电厂的经济性和热效率,现在欧美一些国家都基本使用热电联合生产技术(CHP),锅炉设计基本全部采用流化床技术。CHP工艺中发电效率在30%~40%,但是它有80%的潜力可控。瑞典和丹麦实行利用生物质进行热电联产的计划,使生物质在提供高品位电能的同时,满足供热的需求。丹麦政府已明令电力行业必须每年焚烧140万吨生物质,一般是在流化床炉上混烧或在炉排炉上全烧稻杆。英国Fibrowatt电站的3台额定负荷为12.7MW、13.5MW和38.5MW的锅炉,每年直接使用750000t的家禽粪,发电量足够100000个家庭使用;并且禽粪经燃烧后重量减轻90%,便于运输,作为一种肥料在全英、中东及远东地区销售。美国的生物质燃烧发电工作比较先进,相关的生物质发电站有350多座,发电装机总容量达700MW,提供了大约6.6万个工作岗位,据有关科学家估计,到2010年生物质发电将达到13000MW装机容量,可安排17多万就业人员。2002年日本提出计划到2010年生物质能发电达330MW。

在我国,直燃生物质发电技术主要在有稳定生物质原料来源的制糖厂和林木加工企业使用较多。最近几年来,我国生物质发电产业得到了迅猛发展。截至2007年底,国家和各省发改委已核准项目87个,总装机规模220万千瓦。全国已建成投产的生物质直燃发电项目超过15个,在建项目30多个。根据国家"十一五"规划纲要提出的发展目标,未来将建设生物质发电550万千瓦装机容量,已公布的可再生能源中长期发展规划6也确定了到2020年生物质发电装机3000万千瓦的发展目标。总的说来,我国生物质能发电行业有着广阔的发展前景。

6生物质燃烧利用存在的问题

6.1生物质的收集、储运与预处理

生物质的收集、储运与预处理一直是生物质能利用技术发展的瓶颈。由于秸秆等农业加工剩余物原料较为分散、能量密度低,并且存在明显的区域性和季节性,所以收集、运输及贮存费用是生物质成本的主要部分。同时,由于生物质原料的纤维结构,其预处理困难,成本较高。目前秸秆发电所需的打包机、切碎机以及其他上料设备,产品质量差,生产能力小,亟需按照生物质发电的实际情况进行改进,以满足生物质电厂燃料供应的要求。随着生物质发电技术在我国的推广应用,近年来,一些地方生物质发电厂的密集程度越来越大,已出现无序建设的苗头。加之农业、畜牧业、造纸和家具建材等行业对原料的争夺,生物质燃烧发电厂的原料供应难以保证。同时,新建电厂的锅炉容量盲目求大,并没考虑到生物质原料的特点和经济规模。在建设生物质发电项目时,应充分发挥当地的优势,合理规划和布局,防止盲目布点,根据当地生物质资源的储量和分布特点,确定经济收集半径,据此选择合适的生物质燃烧电厂的规模,并配套合理的生物质收集、储运和预处理,保证原料的稳定供应,提高系统的经济性。

6.2碱金属引起的积灰、结渣和腐蚀

生物质中高的碱金属含量(K,Na)导致生物质的灰熔点较低,给燃烧过程带来许多问题。在燃烧利用过程中,高的碱金属含量是引起锅炉受热面积灰、结渣和腐蚀的重要因素,会直接造成锅炉寿命和热效率降低等;同时高的碱金属含量还易引起床料的聚团、结渣破坏床内的流化,使燃烧工况恶化。

Baxter认为生物质燃烧时的灰沉积率在燃烧早期最大,然后会单调递减,且生物质燃烧所产生的灰沉积表面光滑、孔隙度小,比煤灰沉积更难去除。Bapat等在研究生物质流化床燃烧时发现生物质灰中的碱金属氧化物或盐类与床料颗粒(SiO2)发生以下反应:

形成的低温共熔体的熔融温度分别仅为764e和874e,从而造成了严重的烧结。Blander等模拟了麦秆燃烧时的无机化学反应,发现麦秆中含量最高的两种元素Si和K在燃烧时形成低熔点的硅酸盐沉积在燃烧设备的金属上会造成燃烧设备的腐蚀,因为金属的氧化保护层会溶解在沉积的熔渣中。同时由于碱金属的高挥发性可能会发生如下反应造成腐蚀:

在生物质燃烧利用过程中,通过降低燃料中碱金属含量的比例(与煤混烧或适当预处理手段),设法提高燃料灰分的熔点(加入添加剂),抑制碱金属的挥发性,以及探索选用新型的床料(非SiO2类床料),是解决生物质流化床积灰、结渣和腐蚀问题的有效途径。同时,在保证正常的流化床运行工况的前提下,适当地降低燃烧温度、合理地调节燃烧工况也是一种有效减轻结渣的方法。

6.3高温氯腐蚀

生物质燃料与煤的一个显著不同还在于生物质中的氯含量高,氯在生物质燃烧过程中的挥发及其与锅炉受热面的反应会引起锅炉的腐蚀。当生物质燃料含氯高(如稻草)时,将使壁温高于400e的受热面发生高温氯腐蚀。生物质燃料锅炉的高温氯腐蚀比燃煤锅炉严重得多,应予以足够重视。

生物质燃料锅炉发生高温氯腐蚀的原因主要是生物质中的氯在燃烧过程中以HCl形式挥发出来,与锅炉的金属壁面发生反应,生成的FeCl3熔点很低,仅为282e,较易挥发,对保护膜的破坏较为严重;除了对Fe、Fe2O3的侵蚀外,氯与氯化物还可在一定条件下对Cr2O3保护膜构成腐蚀。当氯、硫化合物共存时:

可见氯、硫化物的同时存在并借助H2O和O2,不仅可加速硫酸盐的生成,也有利于HCl、Cl2的形成,进而加速高温腐蚀过程。除了以上高温气体腐蚀和熔融盐腐蚀之外,HCl气体还易在烟道出口处形成露点腐蚀。

在锅炉受热面设计时选用新的防腐材料,在实际运行过程中应当合理的调整工况,加入适量的脱氯剂或吸收剂脱除或减少HCl的排放,降低炉内HCl的浓度,可以减轻锅炉的高温氯腐蚀。同时考虑到生物质燃料中的氯大部分是以游离氯离子的形态存在,收集原料时采用雨水冲刷后太阳晾干的生物质原料,在一定程度上可以缓解锅炉的高温氯腐蚀。

7生物质燃烧技术的发展与展望

大力发展生物质燃烧技术对于减少温室气体排放、减轻环境污染、优化我国能源结构、维持经济可持续发展意义重大。近20年来,尽管我国在生物质燃烧利用方面取得了长足的进步,但是与发达国家相比,无论是技术层面还是应用层面仍有很大差距,国内大部分的生物质燃烧发电厂仍靠直接引进国外技术为主。同时,国外生物质燃烧的原料主要采用林业废弃物资源,与我国国情相差甚远,我国的主要生物质资源为农作物秸秆,国外引进技术的适用性并不理想。因此大力发展具有我国自主知识产权的生物质高效燃烧技术将是未来我国生物质燃烧技术发展的重要方向。

目前,生物质燃烧技术与常规化石燃料利用技术相比仍然缺乏足够的市场竞争力。为进一步促进我国生物质能产业的发展,建议政府的有关部门制定优惠政策,研究经济高效的燃烧技术,促进建立健全生物质燃料的收集、预处理和配送体系,鼓励建设和使用生物质发电系统,这将对我国社会经济和环境持续协调发展起到重大深远的影响。

同时,在发展我国生物质发电产业的同时,要加强对生物质资源的管理,科学制定生物质发电规划,优化生物质发电项目的布局,切实加强生物质发电的能力建设和人才培养,积极促进技术研发和设备国产化,为生物质发电的发展创造良好的基础。我们相信由于生物质的可再生性、环境友好性及对全球气候异常的抑制作用,大力发展生物质能利用及燃烧发电技术前景良好且意义重大。

原标题:生物质燃烧技术现状与展望

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。
展开全文
打开北极星学社APP,阅读体验更佳
2
收藏
投稿

打开北极星学社APP查看更多相关报道

今日
本周
本月
新闻排行榜

打开北极星学社APP,阅读体验更佳