光伏储能耦合系统介绍随着全球能源结构转型的加速推进和可再生能源的大规模开发利用,光伏发电已成为众多国家和地区的重要电力来源之一。然而,光伏发电具有间歇性和波动性的特点,其输出功率受日照强度影响显著。在阴雨天气或夜晚,光伏电站的发电量会大幅降低甚至完全中断,给电网的稳定运行带来了严峻挑

首页 > 储能 > 储能应用 > 发电侧 > 企业 > 正文

首航新碳索 | 屋顶电站业主必看:光伏储能耦合发电应用浅析

2024-11-12 15:06 来源:首航新能源 

光伏储能耦合系统介绍

随着全球能源结构转型的加速推进和可再生能源的大规模开发利用,光伏发电已成为众多国家和地区的重要电力来源之一。然而,光伏发电具有间歇性和波动性的特点,其输出功率受日照强度影响显著。在阴雨天气或夜晚,光伏电站的发电量会大幅降低甚至完全中断,给电网的稳定运行带来了严峻挑战。

储能系统的出现为解决光伏发电的不稳定性问题提供了有效途径。储能装置可在光照充足时吸收富余电能,在用电高峰或光伏出力不足时释放电能,从而平滑光伏发电的波动,提高能源利用效率。光伏发电与储能技术的耦合,构成了一种新型的能源系统形态——光伏储能耦合系统。光伏储能耦合系统是由光伏发电单元、储能单元和能量管理单元组成的综合能源系统。其中:

①光伏发电单元通过光电转换将太阳能转化为电能,是系统的能量来源;

②储能单元主要由电池组成,可吸收光伏发出的多余电能,也可在需要时向外释放电能,起到调节和缓冲的作用;

③能量管理单元则集成了监测、控制、通信等功能,负责优化调度光伏和储能的运行,保障系统安全、经济、稳定。

通过这三大单元的协同工作和统一调度,光伏储能耦合系统可显著提高可再生能源消纳能力,降低弃光限电比例,改善电能质量。同时充分发挥储能的灵活性和快速响应能力,为电网提供调频、调压等多种辅助服务,提升电力系统的安全性和可靠性。

根据光伏和储能在电力系统中的并联位置,光储耦合可分为直流侧耦合、交流侧耦合和混合耦合三种形式。直流侧耦合是将储能接入光伏阵列的直流母线,通过共用逆变器并网,效率较高但控制灵活性差。交流侧耦合是光伏和储能配置各自逆变器,在并网点交流母线并联,可降低能量转换次数,控制更灵活。而混合耦合则结合了两种方式的优点,但系统更复杂。

1.jpg

高压交流侧耦合并网光储系统图

2.jpg


低压交流侧耦合并网光储系统图


3.jpg

直流侧耦合并网光储系统图

总的来说,光伏储能耦合作为一种新兴的能源利用方式,可显著提升可再生能源利用水平,优化电网运行,推动能源结构转型。但其规模化应用仍面临着技术、成本、政策等诸多挑战,需要产学研用各界的协同创新和大力支持。

光储耦合系统的应用价值

光伏储能耦合系统凭借其独特的优势和广阔的应用前景,在电力系统的供应侧、电网侧和用户侧均能发挥重要价值,具体体现在:

①提高可再生能源渗透率。光伏发电容量大,但受天气条件影响较大,发电功率难以准确预测和有效调控。通过与储能进行优化配置和耦合运行,可大幅提高可再生能源的消纳比例和利用效率,实现电网对高渗透率光伏的友好接纳。

②增强电力系统灵活性。储能作为连接发电侧和用电侧的桥梁,可通过自身的灵活调节,快速响应电网需求变化,降低电力系统的备用容量,为新能源大规模接入创造有利条件。同时,分布式光储系统可就近满足用户用电,减轻电网输电压力。

③参与电网辅助服务。光储耦合系统可作为分布式电源参与电网频率调节和电压支撑,提供旋转备用和黑启动等辅助服务,减少常规调峰电源出力调整频次,延长机组使用寿命。储能也可平滑光伏发电功率波动,改善电能质量。

④支撑微电网运行。在偏远岛屿、山区等电网薄弱地区,光伏加储能可组建独立运行的微电网系统,充分利用当地丰富的太阳能资源,满足居民基本用电需求。储能可在微电网内部平衡功率,维持电压、频率稳定。

⑤推动源网荷储协调。在新型电力系统中,光伏代表分布式电源、储能代表灵活负荷,两者与电网、用户负荷形成协同互动的共生关系。通过优化调度源网荷储,可有效解决新能源高比例接入、电动汽车大量充电等场景下的电网瓶颈问题。

⑥助力需求侧管理。对于工商业用户,配置光伏储能系统可显著降低用电成本,提高能源自给率、电费管理效率和供电可靠性。储能还能错峰填谷,削减用电负荷尖峰,为需求侧管理创造条件。同时光储系统的友好接口,可支持主动响应电价和电网调度指令。

⑦促进能源互联网建设。在能源互联网背景下,分布式光伏储能系统的广泛接入,将显著提高电网的灵活性、高效性和互动性。海量分散的储能单元可通过能量路由器聚合为虚拟电厂,整合成为电网可调度的负荷资源,参与系统优化。

⑧探索多能互补新模式。"光伏+储能"系统还可与其他能源形式组合,实现电、热、冷、气等多能流的耦合与协同。例如与电动汽车充电桩结合,可构建"光伏+储能+充电"的绿色交通能源网络;与燃料电池、热泵等联用,可打造兼具环保与经济性的能源互补系统。

光储耦合系统的经济性分析

【注】文中所有案例仅作为说明示例,不作为价格参考。

以某矿山3MW屋顶光伏电站为例,配套1MW/1MWh的集装箱式锂电储能系统,可较好地实现削峰填谷、错峰套利等多重效益。

该3MW光伏电站首年发电量超过380万kWh,预计前10年年平均发电量为340万kWh,25年使用寿命期内年均发电量可达310万kWh。按照78%的自发自用电量和22%的余电上网电量,并以0.75元/kWh的工业用电均价、0.3949元/kWh的燃煤标杆上网电价为参考,同时考虑每年7万元/MW的运维费用,该光伏电站年均创效总收益(单位:万元):

340×78%×0.75 + 340×22%×0.3949 - 7×3 = 207

可以看出,单纯光伏项目就已具有显著的经济效益。据测算,该系统还可帮助企业每年减少标煤消耗960吨,减排二氧化碳2500吨、二氧化硫72吨、氮氧化物36吨、粉尘650吨,环境效益也十分可观。

(1)锂电储能系统效益分析

按照储能与光伏 20%的匹配比例、2小时储能时长,3MW光伏宜配套容量约1MW/1MWh的储能系统。目前锂电池的投资成本大约为1.5元/Wh,即1MW/1MWh系统的设备费用在150万元左右。

参考全国各地目前普遍0.6元/kWh以上的峰谷电价差,且光伏上网电价和低谷电价已相差无几,可认为储能系统每天两次充放电的套利空间保守估计为0.6元/kWh。若储能全年利用300天、年维护费用5万元,则1MW/1MWh系统年创收(单位:万元):

1000kWh×2次×0.6元/kWh×300天 / 10000 - 5 = 31

而通过削峰填谷,储能还可帮助企业节省每月的最大需量电费,提高自发自用率约5%,若按年均光伏发电量340万kWh计,这部分电费节省大约为(单位:万元):

340×5%×0.75 = 12.75

综上,1MW/1MWh锂电储能系统全年总创收约43.75万元,投资回收期略高于3年。

(2)光储耦合系统整体效益

将3MW屋顶光伏与1MW/1MWh锂电储能进行耦合,项目总投资约为(单位:万元):

3000×4 + 1000×1.5 = 13500

在25年项目全周期内,光伏年均创效207万元,储能年创效43.75万元,扣除年运维成本,光储耦合系统年总效益可达(单位:万元):

207 + 43.75 - 21 = 229.75

对应项目投资回收期为:

13500 / 229.75 = 5.9年

此外,随着储能核心部件成本的进一步下降、电价市场化进程的加速,以及"双碳"政策带来的更多补贴与激励,该项目的投资回报率有望进一步提升。

综上所述,光伏储能耦合系统在经济性和环保性方面均表现亮眼。工商业用户尤其是高耗能企业,应充分考虑"光伏+储能"模式带来的多重效益,因地制宜布局新型电力系统,既能节省成本、提升供电可靠性,又可减碳减排、履行社会责任,实现经济和生态的双丰收。

【小航结语】

总的来看,随着"双碳"目标的推进和电力体制改革的深化,在工商业园区推广"光伏+储能"将是大势所趋。储能与光伏的互补耦合,可有效提升可再生能源消纳比例,优化用户侧能源管理,推动电网调峰需求响应,是实现工商业能源清洁化、低碳化的重要路径选择。

当前,实现光储系统成本最优、效益最大化仍需在机理分析、优化控制、商业模式等方面开展更深入的研究。建议广大工商业屋顶电站业主加强与专业机构合作,因地制宜地探索光储耦合的最佳实践,为我国能源转型和"双碳"目标贡献更多企业方案和微观样本。

原标题:首航新碳索 | 屋顶电站业主必看:光伏储能耦合发电应用浅析

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。
展开全文
打开北极星学社APP,阅读体验更佳
2
收藏
投稿

打开北极星学社APP查看更多相关报道

今日
本周
本月
新闻排行榜

打开北极星学社APP,阅读体验更佳
*点击空白区域关闭图片,
双指拖动可放大图片,单指拖动可移动图片哦