在低压电力用户用电信息采集系统中,主要采用电力线载波和短距离(微功率)无线通信方式,并以低压电力线窄带载波通信方式为主。然而受低压配电网信道环境中传输衰减、噪声干扰和阻抗变化等因素的影响,电力线载波通信的可靠性难以得到保证,严重影响系统的稳定运行。也就是说,电力线载波通信设备的通信

首页 > 输配电 > 电力通信 > 技术 > 正文

一种低压电力线载波通信测试设备的研制及相关问题探讨

2016-03-15 10:25 来源:仪商 作者: 白泰

在低压电力用户用电信息采集系统中,主要采用电力线载波和短距离(微功率)无线通信方式,并以低压电力线窄带载波通信方式为主。然而受低压配电网信道环境中传输衰减、噪声干扰和阻抗变化等因素的影响,电力线载波通信的可靠性难以得到保证,严重影响系统的稳定运行。也就是说,电力线载波通信设备的通信性能将直接影响到用电信息采集系统的整体性能。

目前,载波通信技术有多种实现方案,载波信号调制方式、中心频点、路由协议和信号祸合方式等各不相同。尽管每种技术都有其独特的优越性,但也有其不利因素。就国内产品而言,已进入多元化时代,主要应用的就有鼎信、东软、晓程、力合微、瑞斯康、盛吉高科和弥亚微等厂家。各厂家的载波通信模块的性能均有所差异,厂家提供的抄表产品性能指标通常都符合标准。但由于测试装备有限,测试手段有一定局限性,无法对载波通信产品的通信功能进行合理验证,致使产品性能的检验与应用需求脱节,所以有必要进行相关的测试和评估,为选用合适的载波设备提供技术支持和依据。鉴于以上原因,国内外相关机构正在从测试方法、测试设备、测试平台以及评价机制等方面对载波设备的通信性能测试进行积极地研究和探索。本文介绍了一种信道参数可控的载波通信测试设备,并就进一步的性能测试应用中存在的问题进行一些探讨。

一、一种载波通信性能测试设备的研制

1、总体研制思路

电力线载波通信性能测试设备的研制,主要考虑3个方面的因素作为设计指导原则。一是实验室环境下模拟低压配电网电力线传输信道特点;二是参考电力行业以及国家相关标准要求的测试项目;三是以测试主机为交互中心,以传输信道参数可程控调节为手段,建立自动化的载波通信性能测试装置。

近年来,针对电能采集标准相关的政策法规相继出台,并在测试项目和可操作性方面不断完善。诸如DL/T698-2010《电能信息采集与管理系统标准》、Q/GDW1373-2013《电力用户用电信息采集系统功能规范》、Q/GDW1374-2013《电力用户用电信息采集系统技术规范》和Q/GDW1379-2013《电力用户用电信息采集系统检验技术规范》等。对这些规范的理解及大量的测试研究成为设备研制的基础。

2、设备组成

测试设备的构建以模拟低压电力线传输环境为主要任务,其架构如图1所示。主要组成部分包括:三相净化稳压电源、程控相位选择模块、载波隔离器、测试主机系统、程控衰减网络、程控负载选择网络、噪声发生器和信号测量部分。信道模拟装置包括程控衰减网络、程控噪声源和程控阻抗模拟器,以模拟载波信号传输环境。而信号测量模块包括频谱分析仪和数字示波器,人工电源网络提供载波电平测试阻抗参考环境,保证测试结果符合相关标准和规范要求。

图1低压电力线载波通信性能测试设备组成结构

3、测试流程简述

三相交流净化稳压电源、高性能隔离器和人工电源网络实现整体测试环境与市电网络的有效隔离;测试主机充当载波系统主站的功能;测试主机通过以太网/USB/串口(RS232或RS485)总线连接配测设备(例如抄控器、集中器或载波通信模块)和被测设备(例如单相、三相智能电表或各种载波通信模块),从而实现对测试环境的控制,同时进行数据互通。

系统能够按照预先设计的测试流程,在通信信道中加入可控噪声,改变信道衰减与接入阻抗。在测试主机的控制之下,配测设备按照家电国网公司通信协议,通过图1所示的电力线传输路径,经由可变衰减器(可选模拟线缆)与被测设备进行载波通信;被测设备接收控制、抄表等命令,回传状态、电能值等系列数据,从而形成基于低压载波通信体制的传输通道。通过测试各种条件下采集终端、载波电能表的通信效果,测量载波模块的各项参数和指标,并据此分析、诊断和评估载波模块的通信性能。

对照相关标准对测试项目的要求,例如载波信号频率测试、最大输出电平和频带外干扰电平测量、通信传输成功率测试以及规约符合性测试等,在所研制的测试设备上都可以顺利进行。但是,其中的噪声注入缺乏定量描述,而关于衰减量的插入又难以准确把握,基于一定信噪比容限下信道误码率的测试和接收灵敏度测试尚不规范。下面仅就电力线载波通信抗噪声性能和灵敏度测试问题做一些浅显探讨。

二、抗噪声性能测试

在实验室环境下,不加噪声测试信道误码率或者通信传输成功率基本上没有明显意义。低压电力线对于载波抄表具有高衰减、强干扰和阻抗结构可变等动态时变特征,现场信道环境恶劣。目前还缺乏权威机构针对低压电力线的特征进行全面有效的测试和分析,甚至家用电器对载波抄表的影响还没有正式的测试数据。因此,测试设备注入噪声的方式、类型和电平等因素在测试测量中尤显突出。

1、干扰源的注入策略

图2为低压电力线载波通信抗噪声性能测试原理框图。低压电力线噪声由多类复杂噪声共同组成,包括背景噪声、随机脉冲噪声和周期脉冲噪声。为了逼近现场噪声场景,在电力线载波传输链路上叠加不同的干扰源,同时调节干扰强度。据此试验信道环境测试信道信噪比和通信成功率,所叠加的干扰源可分为以下4种。

图2低压电力线载波通信抗噪声性能测试原理框图

(1)背景噪声。指在发生、检查、测量和记录系统中与有用信号无关的一切干扰。背景噪声是典型离散高斯型的,共对载波通信系统影响较稳定。

(2)脉冲噪声。具有瞬间、高能和覆盖频率范围广的特点,因而对于载波信号传输的影响相当大,不仅会造成信号误码率高;还有可能使接收设备内部产生自干扰,严重影响整个系统的工作。

以上两种噪声可以由噪声/任意函数发生器产生。

(3)白噪声加脉冲噪声。电力线路中这两类噪声通常并存。

(4)现场环境噪声。由噪声模拟器产生,通过在不同场合(城市、农村和山区)、不同时间段(白天、晚上)和不同天气(晴天、阴雨天)等场景下,对低压电力线现场背景噪声的采集和录制,将录制的背景噪声进行分析和归类,形成一个现场背景噪声的噪声库,再从噪声库中选取相应的噪声,通过D/A转换、噪声放大还原电力线现场信道环境,叠加到测试链路中。

噪声模拟器属于测试测量数据采集设备,可以自己研制,也可以采用专业公司提供的测试采集解决方案。例如,美国国家仪器(NI)公司的数字化仪,结合NILabview采集控制、存储分析软件和Matlab分析软件,能够完成对电力线噪声信号的采集、保存和数据深加工。

2、抗噪声性能试验流程

试验项目为一定信噪比条件下的通信成功率测试,噪声环境有4种,即白噪声、同频噪声、脉冲噪声和场景模拟噪声。以RMS方式对噪声和信号强度进行测量,测量带宽超过信号传输带宽,由信号分析仪完成,通信成功率由测试主机按照标准协议实现,衰减量和噪声叠加均由主机程控。基本流程如下。

(1)初始状态下,选择衰减器处于10~20dB衰减量。

(2)调节信号发生器发射功率和衰减量,设定初始噪声功率(如-5dBm、-10dBm或者其他值)。

(3)改变噪声类型,如白噪声、同频噪声、脉冲噪声、白噪声+脉冲噪声和现场场景噪声。

(4)逐渐增大噪声功率,在每组信噪比条件下进行100次载波通信测试,记录通信成功率,直到通信成功率低于95%(或者其他标准值,如99%),记录此时的噪声功率为载波通信模块的抗噪声性能指标。

测试评估。针对不同的噪声类型和噪声功率,会形成一定的信噪比条件,通信成功率也会随之变化,据此可以判断其抗噪性能。例如对于脉冲噪声条件,如果在-10dBm时达不到通过成功率,则认为试验不通过;而对于白噪声,达不到-5dBm的条件时,则判断为试验不通过。信噪比条件判断临界值需要行业标准。

三、灵敏度测试及抗衰减性能测试

在用电信息采集系统相关系列规范中,专网无线、公网无线都提到了接收灵敏度指标,但对电力线载波信道仅有传输误码率性能要求,而没有灵敏度方面的性能要求。因而,有业内人士提出需要增加适当的通信能力指标和环境适应性指标来针对低压电力线的恶劣环境和时变特性,通信能力应该有接收灵敏度和抗干扰性指标,还要有系统性的考核指标,特别是系统抄收时间、中继路由及自适应性。

针对灵敏度性能测试,也有不少测试从业人员进行了深入的研究,并提出了一些测试方案和优秀算法。如图3所示,基于本文的测试设备,从原理上讲满足灵敏度测试的技术要求,但是在实际操作中需要澄清并解决一个问题,即载波隔离,即载波衰减问题。如果不能在测试环境中很好地解决这个问题,所谓的灵敏度性能测试和抗衰减性能测试就很难量化其技术指标。

图3灵敏度和抗衰减性能测试回路

1、测试方法及存在的问题分析

基于图3的抗衰减性能和灵敏度测试原理如下。

衰减性能测试参考方法。在电力线载波信道上介入衰减量可调的电力线衰减器。衰减量从50~60dB开始逐步增加,在每一组衰减值条件下进行100次载波通信测试,记录通信成功率。直至通信成功率低于95%,记录此时的衰减值作为载波通信模块抗衰减性能。

灵敏度参考测试方法。逐渐调节程控电力线衰减器的衰减幅度,直到“被测载波通信设备”刚好能够成功接收到“配测载波设备”发送的载波信号为止,抄收30次成功率高于90%,此时记录程控衰减器的衰减量为k,用频谱仪测量“配测载波设备”的信号功率为X,则“被测载波通信设备”的接收灵敏度C=X-k(dBuv)。

从以上测试原理及方法不难看出,抗衰减性能测试和灵敏度测试都基于两个前提条件,一是在工频强电线路上完全隔离了载波信号,至少达到断开衰减通道的情况下无法成功通信;二是调节衰减器能够真正的实现对载波信号由通到断的渐进过程。由此可见,建立一条工频强电信号的独立通道,是实现灵敏度和抗衰减特性测试的必要条件,图4为其原理结构。

图4改进的灵敏度和抗衰减性能测试结构

2、关于载波隔离器的实现

载波耦合器的设计已经是成熟技术,而载波隔离器的实现也有很多种方式,大多采用基于电力衰减器的隔离方式。可以由多级LC衰减电路通过程控继电器构成,图5为典型的二级LC衰减结构。许多载波通信模块供应商都提供与其产品相对应的成品衰减器。

图5标准LC衰减级联网络

从理论上讲,多级LC衰减级联结构,将能够使通信不成功,但在实际测试中,几乎不可能。发现随着串联级数的增加(试验达到7级,每级标称衰减59dB),开始抄表不成功,多次抄表之后,慢慢由部分抄通到全部抄通。

当然,有效实现载波隔离形成独立交流市电通道的方式有很多种,有文献资料设计了AC-DC-AC转换器加锁相环的方法。从目前试验的情况看,很大原因不是衰减器的问题,而是载波模块的通信方式问题。因为大部分厂家的通信模块,其载波发射功率超过了标准规范要求的电平,带外干扰也超标;而且其调制方式、速率也会根据线路环境作出调整。也就是说,载波通信模块的功率、速率,甚至调制方式都有自适应能力。

3、关于程控衰减网络的构建

程控衰减网络的构建方式,在测试设备中试验了以下两种。

(1)采用多级LC衰减电路。基于程控继电器构成,原理上与前述隔离器相同。如果采用这种结构,可以去掉载波耦合器。

(2)采用微波同轴程控衰减器构造。经过载波耦合器隔离交流强电之后,只有载频小信号(100kHz以上的频率,标准要求最大为15dBm),因此采用常规成熟的微波同轴衰减器是没有问题的。

另外,经典的T型和π型电阻衰减网络也能用以衰减电力线载波信号,结合程控继电器达到程控衰减的目的。

经过试验,测试设备可以对部分通信模块实现灵敏度测试。

四、结束语

所研制的载波通信性能测试设备能够按照国家电网公司相关标准执行系列性能测试;但还需要在测试线路中增加现场环境背景噪声模拟功能,才能有效进行抗噪声性能测试;尤其在抗衰减性能测试和灵敏度性能测试中还需要进一步解决载波隔离问题,同时针对程控衰减网络提出了一些构建方法。在问题探讨中,就载波通信模块的功率和速率自适应情况提出了个人看法,以期随着通信及测试标准的不断完善以及测试从业人员的努力,能够提供更加完善的测试装备。

原标题:技术丨一种低压电力线载波通信测试设备的研制及相关问题探讨

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。
展开全文
打开北极星学社APP,阅读体验更佳
2
收藏
投稿

打开北极星学社APP查看更多相关报道

今日
本周
本月
新闻排行榜

打开北极星学社APP,阅读体验更佳