1、仟亿达回转窑余热发电技术方案
本方案所要解决的技术问题是提供一种可实用的水泥回转窑筒体散热回收利用装置,可以有效换热并解决可能引起回转窑筒体表面超温等问题。目前处于小试阶段。方案要点为:
(1)在回转窑筒体上分段装设换热罩,换热罩与回转窑筒体之间采用特殊设计的密封结构,使回转窑筒体与换热罩之间形成密封的换热腔。换热腔内充满水和汽水混合物,对回转窑筒体进行相变和对流传导换热;换热后可直接产生低温低压蒸汽用于仟亿达回转窑余热发电。
在回转窑筒体上安装6组换热装置,汽包可安装在窑尾预热器框架上。位于窑尾的6#换热装置用于给水预热。位于窑烧成带的1#、2#、3#换热装置和位于窑过渡带的5#换热装置作蒸发器使用,用于产生蒸汽(汽水混合物);位于窑过渡带(筒体表面温度较高)的4#换热装置可作为过热器使用。
(2)用作蒸发器的换热装置工作原理相同。通过6#换热器预热后的水从底部进入换热装置的换热腔,与温度较高的窑筒体表面(表面温度大于>150℃)直接接触发生自然对流沸腾或核态沸腾,汽泡上升至所述换热腔上部的集气区,集汽区的饱和蒸汽或汽水混合物通过换热腔顶部的蒸汽管道引至汽包。在4#换热装置作为过热器使用时通过汽包分离后的饱和蒸汽引至4#换热装置,与温度较高(>200℃)的过渡带回转窑筒体表面强制对流换热后,形成低温低压过热蒸汽(过热度30℃左右)用于汽轮机的补汽。
(3)换热装置由换热罩、换热罩两端密封结构及窑筒体共同组成,形成密封的换热腔。其外表面(朝大气侧)覆盖隔热保温层,以防止热量散失。换热罩通过滑轮安装在4个导轨上,每个导轨的两端带有可调整的限位装置。换热罩不随窑转动但可通过两端密封装置传递推力后跟随窑的“上行”或“下行”滑移。换热罩在朝原有窑筒体自动扫描测温仪方向设置测温窗,满足对窑筒体的测温要求。由于工质引起的测温误差可通过自动测温仪的数据调整进行修正。
密封结构由“柔性联接”于窑筒体上的动密封环、装设在换热罩上的可自动推进的静密封环、弹性静密封环和主、副密封用盘根等组成。
2、仟亿达回转窑余热发电技术背景
回转窑筒体内部温度高,窑外分解窑为900~1600℃。尽管采用各种隔热措施(目前主要是耐火砖和窑皮),窑筒体表面温度仍较高,窑外分解窑筒体表面温度沿窑筒体轴向分布变化范围在120-400℃之间,平均温度为270℃左右,由此带来的散热损失占水泥熟料烧成热耗的5%以上。以2500t/d窑外分解窑为例,按年有效运转300天,吨熟料热耗770kcal/t-cl、窑筒体散热5%计算,窑筒体一年的散热损失为2.89×107kcal、折合标准煤4130吨。此外,窑筒体温度较高部分还需要使用风机鼓风冷却,再耗费一部分电能,仍以2500t/d窑外分解窑为例,年耗电25万kwh左右。
到目前为止,水泥行业对回转窑筒体散热还没有较好的利用方法。国内北方一些水泥厂有产生热水取暖的利用方法,在窑筒体表面温度较高部位(烧成带或过渡带靠窑头部位)装设半封闭的隔热罩(全封闭会带来窑筒体超温问题),在该隔热罩内朝回转窑侧装设换热水管,依靠窑筒体表面对换热水管的辐射换热取得热水用于采暖,但由于低温辐射换热、传热效率很低。同样地,笔者了解到某项利用窑筒体散热产生蒸汽的方案中,由于包裹在窑筒体外的蒸汽发生器与窑筒体之间必须有空气间隙,在依靠低温辐射换热情况下,不仅传热效率低,还极易引起窑筒体超温,在实用意义上存在困难。
仟亿达回转窑余热发电上进行利用窑筒体表面散热增加余热发电量的工业性试验。技术要点为:在窑筒体过渡带温度较高部位装设全封闭隔热罩,在该隔热罩与窑筒体之间形成的封闭内腔中通入空气,以强制对流换热方式对节能环保窑筒体表面换热。换热后取得的热风引入篦冷机再升温,与篦冷机废气一起作为余热发电窑头锅炉(AQC炉)的热源。试验取得一定成功,在窑系统相同工况下增加了AQC炉产汽量。存在的问题是用空气作为换热介质时,由于空气的导热性能差,对流换热的效率不高,需进一步改进。